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Corrigendum
The role of the spatial dependence of the electron
effective mass in forming the Wannier–Stark
spectrum
N L Chuprikov 1999 J. Phys.: Condens. Matter
11 1069–78

The author sincerely thanks Professor Yu V Kopaev for
pointing out an important mistake made in the above paper.
The model presented in the paper, which is based on the
effective mass approximation, pretends to reveal the inherent
energy spectrum in the Wannier–Stark problem for infinite
superlattices. At the same time, as was shown in the paper
itself, for a given particle’s energy E the transfer matrix
Z(−∞,0)(E)Z(1,∞)(E) to describe the whole periodic structure
is expressed in terms of the one-period transfer matrix Z at
the energies E ± n� where n = 0, 1, . . . This means that the
effective mass of a particle should be taken into account at all
these energies too. However, this task cannot be performed
because a part of these points fall into the energy gaps where
the notion of the effective mass has no physical sense. Thus,
the effective mass approximation is a poor basis for solving
the Wannier–Stark problem for superlattices. This is true for
any value of the electric field strength.

It should be stressed here that the model presented in
the paper [1] for solving this problem in the case of lattices
is entirely applicable to superlattices. As regards the model
considered here, its results can be applied to all physical
problems where the same (by form) equations appear, provided
that the equation of the model is treated beyond the effective
mass approximation, as the Schrödinger equation for a particle
with a spatially dependent mass (described by the periodic
piecewise constant function).
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Abstract. We have shown that in the effective mass approach the spatial dependence of the
effective mass significantly influences electron properties in the Wannier–Stark problem. That is,
if the effective mass of an electron in the infinite periodic structure is uniform everywhere, then
its inherent energy spectrum is continuous. But if the effective mass in the adjacent layers of the
periodic structure is different, then the energy spectrum must be discrete and consist of so-called
Wannier–Stark ladders. To calculate the Wannier–Stark spectrum and the corresponding wave-
functions, we proposed a formalism based on the transfer-matrix method. The formalism is used
to investigate anticrossing of the levels of the different Wannier–Stark ladders.

1. Introduction

Although the study of the electron motion in periodic structures in a constant uniform electrical
field (the Wannier–Stark (WS) problem) has a long history, there remain moot points in its
solution. The main question that we will dwell on is as follows. On the one hand, as was shown
experimentally (see for example [1]), the energy spectrum of an electron in superlattices (SLs)
consists of the so-called WS ladders predicted by Wannier [2] (this is also attested to by reliable
numerical calculations (see for example [3])). On the other hand, the theoretical analyses
based on the one-dimensional single-particle Schrödinger equation with both vector [4] and
scalar [5–7] potentials show that, for infinite periodic structures with any bounded (within
a period) potential, its spectrum must be continuous. And only for periodic structures of
the δ-potentials (under certain conditions) [4] and of theδ′-potentials [8] should the energy
spectrum be discrete. Since the latter two models cannot approximate real structures whose
potentials have finite discontinuities, this means that there is no theoretical model which would
be suitable for SLs and have a discrete spectrum as a solution.

Particular attention is merited by an approach [9, 10] which treats the same equation as
in [4–7], but yields a discrete electron spectrum. The main feature of this method is the
inclusion of only a finite number of minibands in the expansions in the Bloch functions. In our
view, this is equivalent to the fact that the probability of finding the electron in the minibands
ignored should be zero, and, hence, the whole energy region above the uppermost allowed
miniband thereby transforms into a gap. Then, in the tilted-bands representation, this means
that the electron motion in this approach is spatially localized. Therefore, this method cannot
serve as a tool for revealing the genuine electron spectrum in the WS problem for a given
periodic structure. Rather, it is a tool for studying the WS states after the discreteness of the
spectrum for the structure has been established. In particular, making use of this approach to
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solve the WS problem for lattices is, strictly speaking, incorrect because the spectrum in this
case is continuous irrespective of the electric field strength [7].

However, as will be seen below, the application of this method [9, 10] to SLs is well
grounded. The point is that the Schrödinger equation, which has been exploited in theoretical
analyses of the WS problem, beginning with Wannier’s paper [2], is well suited to describe
lattices but it is very crude for SLs. It is known [11,12] that the simplest equation describing
the motion of an electron in a SL is of the Sturm–Liouville type, but is not the Schrödinger
equation. Now the electron (as a quasi-particle) has (effective) mass which can be changed
over the structure. In this paper we show that it is the spatial dependence of the effective mass
that plays a decisive role in forming the discrete spectrum for SLs. Thus, the effects of the
electrical field on an electron in the lattices and SLs differ qualitatively (except in the special
case of SLs with everywhere uniform effective mass). Therefore, in the WS problem we will
further distinguish the lattice model whose solution is presented in [7] and the SL model (SLM)
which is considered below (by means of this terminology, SLs with strongly uniform effective
mass are described by the lattice model).

It is interesting to note that, in the numerical modelling of SLs (see for example [3]), the
difference in the effective masses of the adjacent layers is taken into account. However, as we
know, the fact that the electron spectrum in the problem can be qualitatively transformed, as
one passes from the model with the everywhere constant electron mass to that with different
masses in different layers, has not been discussed in the literature. It is generally agreed that
the electron spectrum in the problem depends only on the potential form and the electric field
strength.

2. The model

The model of SLs in the electrical field which will be considered here coincides with that
presented in [7], except that the electron massesm∗(x) in the out-of-barrier and barrier regions
are different (the terminology and notation used here are adopted from [7]). In addition, the
effective mass is assumed to be constant within the layers. This model can describe SLs formed
from two alternating layers of different materials.

We recall that in the SLM the electron motion is governed by an equation of the Sturm–
Liouville type [11,12]. For each region where the effective mass is constant, it coincides with
the Schr̈odinger equation—that is,

d29

dx2
+

2m∗

h̄2

(
E − V (x))9 = 0 (1)

whereE is the electron energy; the potentialV (x) is determined by the following expressions:

V (x) =
{
v(x)− n1 if x ∈ (an, bn+1)

−n1 if x ∈ [bn, an]
(n = 0, . . . , N − 1)

wherebn = nD; an = l + nD (n = 0, . . . , N); 1 = eED; e is the (modulus of the) electron
charge;l is the width of the out-of-barrier regions;D is the SL period;E is the electric field
strength; andv(x) is a boundedD-periodic function. The electron effective mass is such
thatm∗ = m for the barrier regions andm∗ = m0 for the out-of-barrier ones; herem0 and
m are constants. At the boundaries of adjacent regions, the function9 ′(x)/m∗(x) must be
continuous.

The main goal of the paper is, as in [7], to find the stationary states9E(x;E) for an electron
which correspond to the symmetry of the problem. We recall that the symmetry condition for
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this problem may be written as (see [7])

9E(x +D;E) = constant×9E(x;E +1) (2)

where the constant is a complex value. In the lattice model, such functions have been shown
to exist, and their calculation is reduced to solving the functional equation for the coefficients
of the general solution of equation (1) for the out-of-barrier region of the zero cell [7].

Let us write down the general solution of equation (1) for the out-of-barrier regions in the
form

9(x;E) = A(+)n (E) exp[ikn(x − bn)] + A(−)n (E) exp[−ikn(x − bn)] (3)

wherekn =
√

2m0(E + n1)/h̄2; n = 0, . . .. The coefficients in expression (3) for the wave-
functions required must satisfy, as was shown in [7], the functional equation

A0(E) = C(E)Z(E)A0(E +1) (4)

whereC(E) is a complex function, and

Z = Y0 =
(
q p

p∗ q∗

)
An =

(
A(+)n

A(−)n

)
. (5)

HereY is the transfer matrix (see [7]) describing the barrier region (on the assumption that there
is no step on the right-hand side of the barrier), andα0 is the matrix matching the solutions at
the step. Also

α(E) =
√
k1(E)/k0(E).

It should be noted that the matching matrices in our model and the lattice model are the
same. However, the transfer matricesY describing the barrier are different. In particular, the
transmission coefficientT for the rectangular barrier is determined, as follows from [13], by
the expression (for the above-barrier case)

T =
(
1 + θ2 sin2(ϕ)

)−1
(6)

where

θ = 1

2

(
κ̃0

κ̃
− κ̃

κ̃0

)
ϕ = κd

κ̃0 = κ0/m0 κ̃ = κ/m
k =

√
2m(E − V0)/h̄

2.

(7)

Here,V0 is the height of the rectangular barrier.
Recall that the solution of equation (4) depends fundamentally on the asymptotics of the

functionT (E) [7]. From (7) it follows that, asE→∞,

θ =
{

0 form = m0

θ0 for m 6= m0
whereθ0 =

(
m

m0

)1/2

−
(
m0

m

)1/2

.

Thus, unlike in the case for the lattice model where the transmission coefficient, with
increasing energy, rapidly approaches unity (see also [7]), the functionT (E) in the SLM
oscillates, at large energy, between unity and(1 + θ2

0 )
−1. That is, the electron ‘feels’ the

jumps of the kinetic energy at the layer boundaries at all values ofE. As a result, the energy
spectra in the lattice model and in the SLM, in the absence of the electrical field, are essentially
different. That is, in the first case the energy gap approaches zero with increasing gap index,
but in the second case, in contrast, it grows infinitely (see figure 1) (as in the model with
theδ′-potential [8]). This leads to functional equation (4) having only a trivial solution, and,
therefore, another approach is required in the SLM to search for the wave-functions obeying
the symmetry condition of the problem.
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Figure 1. The gap width as a function of the gap index for three values ofm: (1)m = 0.067me,
(2)m = 0.07me, (3)m = 0.093me; V0 = 0.243 eV,d = 25 Å, l = 95 Å,m0 = 0.067me.

3. The Wannier–Stark spectrum

Because the gap width grows infinitely together with the gap index, the transmission coefficient
T(1,∞) for the semi-infinite structure positioned to the right of the zero cell must be zeroa priori
(recall that in the lattice model [7]T(1,∞) 6= 0 at any electron energy). Thus, the semi-infinite
structures disposed to the left and to the right of the zero cell are both absolutely opaque to an
electron with a variable effective mass; hence, its motion should be spatially localized. In this
case the wave-function must tend to zero when the number of the cell, which is sufficiently far
from the zero cell, grows.

To find the corresponding wave-functions, we proceed as follows. Recall that the solutions
for the zeroth andN th cell located to the right of the former are connected by the expression
(see [7])

ÃN(E) = Z−1
(1,N)(E)A0(E) (8)

where

ÃN(E) = α(1,N)(E)AN(E) α(1,N)(E) =
N−1∏
n=0

α(E + n1)

Z(1,N)(E) = Z(E) · · ·Z(E + (N − 1)1) ≡
(
Q(1,N) P(1,N)
P ∗(1,N) Q∗(1,N)

)
Q(1,N) = 1√

T(1,N)
exp(−iJ(1,N)) P(1,N) =

√
R(1,N)

T(1,N)
exp

[
i

(
π

2
+ F(1,N)

)]
.

Let us require thatÃN(E)→ 0 whenN →∞. This occurs, as may be shown by using
equation (8), when the general-solution coefficients for the zero cell are determined by the
expression

A
(−)
0 (E)

A
(+)
0 (E)

= exp

[
−i

(
J(1,∞) − F(1,∞) − π

2

)]
(9)

whereJ(1,∞) andF(1,∞) are the parameters of the transfer matrixZ(1,∞). It should be noted
here that this solution exists only whenT(1,∞) = 0. This equality fails in the lattice model.

The limits limn→∞ J(1,N) and limn→∞ F(1,N) in (9) do not exist separately. But the limit
limn→∞[J(1,N)−F(1,N)] does exist. This may be shown by making use of the scattering-matrix
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formalism. The point is that the right-hand term in equation (9) is just the elementS
(1,∞)
21 of the

scattering matrix corresponding to the transfer matrixZ(1,∞). The rapid convergence ofS(1,N)21
with increasingN for this case is evident from the recurrence relation (see for example [14])

S
(1,N+1)
21 (E) = S(1,N)21 (E) + S(1,N)22 (E)S

(1,N+1)
11 (E)p∗(E +N1).

That is, it takes place because the matrix elementsS
(1,N)
11 andS(1,N)22 decrease exponentially

whenN increases, and the correspondingN th cell is in the remote tilted energy gap. As we
have shown, the energy gap grows infinitely with increasing index.

A similar requirement for the wave-function in the limitx → −∞ provides another
expression for the vectorA0:

A
(−)
0 (E)

A
(+)
0 (E)

= exp

[
i

(
J(−∞,0) + F(−∞,0) − π

2

)]
(10)

whereJ(−∞,0) andF(−∞,0) are the parameters of the transfer matrixZ(−∞,0) describing the
semi-infinite structure positioned to the left of the zero cell. The right-hand term in (10)
coincides with the elementS(−∞,0)12 of the scattering matrix that corresponds to the transfer
matrixZ(−∞,0). So the existence of this limit is proved in the same manner as in the previous
case. But now one has to rely on the recurrence relations for the scattering matrixS(−N,0).

The compatibility condition for expressions (9) and (10) provides the equation for the
energy eigenvalues:

J(−∞,0) + F(−∞,0) + J(1,∞) − F(1,∞) = kπ (11)

wherek is an odd number.
Note that equation (11) coincides in form with the perfect-transparency condition for

two-barrier structures [15]. In this case the two-barrier structure is merely the whole infinite
SL immersed in the electrical field, which is described by the matrixZ(−∞,0)Z(1,∞). One
can easily show that for the infinite structures the left-hand side of equation (11) is invariant
when the electron energy varies by a quantity divisible by1. So this equation yields the WS
spectrum, and the corresponding wave-functions satisfy symmetry condition (2). In this case
the constant is equal to unity for the normalized functions.

In the framework of our approach we did not succeed in establishing the number of
different WS ladders. However, according to the papers [9, 10], each WS ladder relates to
some miniband. Thus, as the number of minibands is infinite, the same holds for the WS
ladders. From which miniband some ladder originates may be judged from the localization
character of the wave-function (near anticrossing, the situation is more complicated).

To calculate the eigenvalues, it is sufficient to investigate equation (11) over the interval
(0,1], where they form, in accordance with the above, an infinite countable set. However, we
should point out the fact that the phases in the left-hand term of equation (11), near the levels
corresponding to the minibands in the high-energy region, change so quickly that these levels
can be lost in the numerical estimation. Therefore, to search for these levels, it is desirable to
investigate the energy interval in which the mid-point of the miniband considered is contained.

4. Wave-functions and the anticrossing of levels

Since the set of energy levels in the interval(0,1] is infinite, it would appear reasonable for
the changes in the electric field strength or in any parameter of the SL to lead to crossing of
the levels. But in the one-dimensional case, degeneracy of the energy levels is known to be
impossible. Therefore, what actually happens is the so-called anticrossing of the levels [16–18].
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Figure 2. The anticrossing of the levels for the first two minibands;m0 = 0.067me,m = 0.093me;
the SL parameters are the same as for figure 1.

Interest in this has been increasing due to the Zener tunnelling (ZT) which occurs just at the
anticrossings [16–18].

To demonstrate the efficiency of our approach for the numerical calculations of the
spectrum and wave-functions, and in analysing the anticrossings, we have studied the SL
using the following parameters (see [3]):v(x) = V0 = 0.243 eV,d = 25 Å, l = 95 Å,
m0 = 0.067me, m = 0.092me; me is the free-electron mass. Figure 2 illustrates the anti-
crossing of the levels related to the first two minibands. The value of1 varies over the interval
[0.047, 0.052] eV. Figures 3(a)–3(c) give the wave-functions for the three values of the energy
for the upper curve in figure 2. It is seen how the wave-function related to the first miniband
(figure 3(a)) transforms, when one follows along the curve from left to right, into that related
to the second miniband (figure 3(c)). (For the lower curve in this case, the state inherent to the
second miniband transforms into the state inherent to the first one.) At the anticrossing point
where the two levels are nearest to each other, the contributions from the two minibands are
approximately equal (figure 3(b)). In this state the probabilities of the electron being in the
spatial SL regions corresponding to the first and second minibands are practically equal. In
the stationary case it is this point which attests to the efficiency of the ZT.

Particular attention should be given to the notion of ZT. Strictly speaking, it makes sense to
consider this effect in the time-domain analysis—that is, as a dynamic process. In the vector-
potential representation, the ZT appears as the transitions of a Bloch electron from the lower
minibands to the upper ones. When the scalar potential is used, it appears as the transitions
between corresponding spatial regions. This correspondence arises due to the symmetry of
the problem (see condition (2)). It should be noted that the wave-functions must be current
carrying, in order to describe the tunnelling process. But the stationary states in the SLM are
localized—that is, with zero current. Therefore, they cannot describe the tunnelling process.
Nevertheless, the corresponding wave-functions provide some information about the efficiency
of the ZT for an electron with a given value ofE. Note that the localization character of the
wave-functions changes sharply at the anticrossing points. Far from these points, the electron
is localized in one miniband. That is, in this case ZT is practically absent. But near the
anticrossing points the electron may occupy the spatial regions corresponding to two or more
minibands; that is, the so-called mixing of one-miniband states occurs. This attests to the high
efficiency of ZT for such an electron.

With decreasing1 the anticrossing regions for which the ZT can be observed become
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(a)

(b) (c)

Figure 3. (a) The wave-function atE = 2.640 407 649 461 (the first miniband) for the upper
curve in figure 2 at1 = 0.052 eV; the SL parameters are the same as for figure 1. (b) The
wave-function atE = 2.677 749 47431 (near the anticrossing of the levels corresponding to the
first two minibands) for the upper curve in figure 2 at1 = 0.050 02 eV; the SL parameters are the
same as for figure 1. (c) The wave-function atE = 2.773 119 86751 (the second miniband) for
the upper curve in figure 2 at1 = 0.048 eV; the SL parameters are the same as for figure 1.

narrow, and the requirements imposed on the accuracy of the estimation of the energy levels
become more rigid. Figure 4 shows the wave-function at1 = 5.783 356 93h̄2/(meD

2). It
is seen that the localization character of the wave-function in this case is unusual. As in
the previous case, the electron near the anticrossing may be found, with approximately equal
probability, in either of the two spatial regions which correspond to the first two minibands.
But now there is a relatively wide range (corresponding to the tilted gap between the first
and second minibands) over which the probability of finding the electron is about nil. The
anticrossing domain at a given1 is narrow to the extent that any change in1 in the ninth
significant figure causes suppression of the ZT.

The analysis of the model shows that the mixing effect and, as a consequence, the ZT
depend fundamentally on the parameterδm, whereδm = m − m0. As is seen from figure 1,
at δm 6= 0 the envelope of the gap width as a function of the gap index has a minimum. The
smaller|δm|, the bigger the gap index for which the minimum occurs. As a consequence, the
number of minibands separated by fairly small gaps increases. This means that the mixing
effect is strengthened, and hence stationary states formed by more than two minibands appear.
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Figure 4. The wave-function atE = 42.602 065 509 074 311 for 1 = 5.783 356 93h̄2/(meD
2)

(the case of a weak electrical field); the SL parameters are the same as for figure 1.

When δm → 0, the localization region for an electron expands to infinity. But if|δm| is
infinitely small and not equal to zero, the stationary states remain, evidently, localized; only
for the exact equality,δm = 0, do they become delocalized. In this case we come to the lattice
model [7].

5. Conclusions

The main result of this paper and our previous research [7] is that the energy spectra for an
electron in periodic structures, lattices, and superlattices, in constant uniform electrical fields,
differ qualitatively. For comparison, let us review the most important properties of an electron
in the two models.

5.1. The model for lattices and for SLs with everywhere uniform effective mass

The transmission coefficient for the semi-infinite structure positioned in the classically
accessible region is not equal to zero at any value of the electron energy and electric field
strength. The ZT between the lowest pair of minibands can be very weak. But for those with
large indices it is always significant. As a result, the stationary states for an electron in infinite
structures have, as a rule, (i) a more or less distinct region where the probability of finding
the electron is rather large and (ii) a ‘tail’ forx → ∞ where the probability diminishes as
a power law [7]. Thus, in this model, the eigenfunctions are delocalized in the direction of
the OX axis, and the energy spectrum for an electron is continuous. Note that the stationary
wave-functions for an electron in infinite structures do not satisfy the symmetry condition (2)
(functions obeying this condition are unbounded at minus infinity [7]). There are only damped
Bloch oscillations in these periodic structures. They can be observed only for the lowest
minibands, because in this case the damping is sufficiently weak. The general tendency is
such that the bigger the miniband index, the stronger the damping.

5.2. The model for superlattices with different effective masses in adjacent layers

In this model the semi-infinite structures situated in the classically inaccessible and in the
classically allowed regions are completely opaque to an electron. As a result, the stationary
states for an electron in infinite superlattices are spatially localized, and its energy spectrum is
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a discrete one of the WS type. The ZT for an electron in a stationary state is important only at
the anticrossings. It is appreciable here only for the minibands in the lower part of the energy
scale. This is because the gaps in the upper part of the energy scale enlarge with increase of
their indices, and, as a consequence, the width of the anticrossing regions tends to zero.

Note that the multi-band approach developed in [9,10] is appropriate just for this model.
But it should be noted that the model is very sensitive to changes in the parameterδm. The
basic reason for this is that, for the energy gapWN with indexN , the inequality

lim
δm→0

lim
N→∞

WN 6= lim
N→∞

lim
δm→0

WN.

holds.
In contrast to the case for the lattice model, the wave-functions for an electron in infinite

superlattices of general form obey symmetry condition (2) (the constant is equal to unity for
normalized functions). The electron, in this case, may undergo undamped Bloch oscillations
when the electrical field does not correspond to an anticrossing point. Otherwise, the electron
motion covers more than one miniband and therefore it should have a more complicated
character. The model presented opens up, in our view, new possibilities for detailed study of
the electron dynamics in superlattices subjected to electrical fields. In particular, it would be
interesting to investigate in detail the period of the Bloch oscillations, which is believed to
depend only on1.

We hope that both of the models will help to clarify the moot points (in particular, the
question regarding the inherent energy spectrum) in the WS problem. The intriguing point is
that all of the parties participating in the dispute on this question are right to some extent—that
is, those who claim that the spectrum should be continuous and those who advocate a discrete
spectrum. The salient point is which periodic structure is investigated. If it is a lattice or
superlattice with everywhere uniform effective mass then the spectrum must be continuous. If
it is a superlattice with non-uniform effective mass then the spectrum must be discrete, as was
predicted by Wannier [2] (but in this case the study ought to have been performed beyond the
Schr̈odinger equation).

Of course, the SLM should be considered only as one step in constructing a correct theory
for the WS problem for superlattices. As is seen from this paper, the solution of the problem
depends fundamentally on the asymptotics of the transfer matrix in the high-energy region.
But this is the very region where the effective-mass approach, in the given form, becomes
crude. The more correct equations for the wave-function envelope have to be the basis of
future analyses of the WS problem for superlattices.
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